Kosmické zásahy do přírodní rovnováhy na Zemi

17.12.2016 22:12

 

Jestliže výbuchy supernov jsou důležité pro dodávku biogenních chemických prvků do kosmického prostoru, a výbuch anonymní supernovy pravděpodobně podnítil gravitační hroucení chuchvalce mezihvězdného mračna, z něhož posléze vznikla sluneční soustava, budoucí výbuch velmi blízké supernovy by mohl život na Zemi smrtelně ohrozit. Kdyby se například Slunce stalo supernovou, vypařila by se vzápětí většina planet sluneční soustavy. Naštěstí je jisté, že Slunce se nikdy nezmění ani v novu ani v supernovu. Nutnou podmínkou pro výbuch novy je dvojhvězdná povaha soustavy, v níž jedna složka je bílým trpaslíkem. Nutnou podmínkou pro explozi supernovy je buď výskyt hvězdy ve dvojhvězdě, anebo minimální hmotnost osamělé hvězdy vyšší než osminásobek hmotnosti Slunce. Nebezpečí tedy hrozí pouze od cizích hvězd, které by explodovaly jako supernovy ve vzdálenosti menší než zhruba 30 světelných let od Slunce. Pozorování supernov v cizích galaxiích a výpočty s tím spojené naznačují, že hlavním rizikem blízkých explozí je příliv energetického záření do zemské atmosféry, který by narušil stabilitu ozonové vrstvy - to by následně zničilo život na souši průnikem ultrafialového záření Slunce k zemskému povrchu.

V současné době se do této vzdálenosti vyskytuje jediný potenciálně nebezpečný objekt, jímž je Sírius ve vzdálenosti 9 světelných let. Jde totiž o dvojhvězdu, v níž druhou složkou je kompaktní bílý trpaslík. Dříve než se však systém dostane do fáze, v níž výbuch hrozí, vlivem vlastního (náhodného) pohybu Síria vůči Slunci se vzdálenost Síria od Slunce zvětší natolik, že to našim potomkům neublíží. Nelze ovšem vyloučit, že do kritické vzdálenosti pod 30 světelných let se vlivem vlastních pohybů hvězd dostane potenciální supernova, o které dosud ani nevíme. Je totiž nemožné spočítat vzájemné vzdálenosti hvězd v Galaxii a Slunce pro budoucnost odlehlou milion let a více. Nicméně je téměř jisté, že během existence sluneční soustavy již k explozím supernov v blízkosti Slunce došlo, a život na Zemi nebyl vyhlazen, což skýtá dobré vyhlídky i pro budoucnost.

Jiným a vlastně pravděpodobnějším rizikem pro život na Zemi mohou být změny dráhových parametrů Země. Vlivem gravitačních poruch se totiž neustále mění dráhové parametry Země, tj. výstřednost dráhové elipsy, sklon rotační osy k rovině ekliptiky a poloha přísluní vůči "ročním dobám". Tím se mění průměrné ozáření určitých oblastí zemského povrchu a tedy i střední teplota (Brocker a Denton, 1990). Již ve dvacátých letech tohoto století ukázal Milankovič, že kolísání průměrné teploty zemského povrchu v geologické minulosti odpovídá cyklům kolísání dráhových parametrů Země - tak vznikají pověstné ledové doby v intervalech několika desítek tisíc let. Jelikož však změny dráhových parametrů Země nejsou nijak veliké, nemůže dojít tímto způsobem k nevratnému zamrznutí nebo naopak přehřátí oceánů.

Geologové ve spolupráci s geofyziky našli též zřetelné důkazy o kolísání intenzity zemského magnetického pole a o zcela svérázném putování magnetických pólů po zeměkouli - občas si dokonce póly obrazně řečno navzájem vymění svou polaritu (Fuller, 1987). Vznikla obava, že ve fázi "přepólování" klesne indukce magnetického pole Země k nule, a tím je Země zbavena ochrany před vpádem energetických elektricky nabitých částic slunečního větru a kosmického záření. To by jistě vyvolalo vymření živočichů i rostlin. Tato přepólování jsou fakticky velmi četná na časové stupnici pod sto tisíc let, a jelikož paleontologové nenalezli žádný vztah mezi magnetickým přepólování a vymíráním živočichů, zřejmě ani v tomto případě nejde o nic kritického. Spíše je pravděpodobné, že magnetická indukce neklesne na Zemi nikdy na nulu. Nejspíše se totiž dipólové magnetické pole změní v kvadrupólové či dokonce oktupólové, a tak je život na Zemi chráněn trvale.

Na rozdíl od rozšířené představy neohrožují člověka či jiné živočichy magnetické bouře, vyvolané slunečními erupcemi - jde o zcela nepatrná kolísání zemského magnetického pole. Navzdory rozličnému strašení nemůže sluneční činnost poškodit člověka, který se nachází pod ochranným štítem zemské magnetosféry - je opravdu podivuhodné, že vše je zařízeno tak, že Slunce nám dodává energii potřebnou pro život bez jakýchkoliv rušivých efektů - ty spolehlivě odstíní zemská atmosféra ve spolupráci s magnetosférou.

Jen na okraj poznamenávám, že Země je rovněž chráněna před průnikem radiových vln o vlnové délce nad 15 metrů - to obstarává zemská ionosféra. Nicméně intenzita radiových vln z vesmíru je trvale tak nízká, že by nás to nijak neohrozilo, i kdyby ionosféra zcela zmizela (jen bychom nemohli poslouchat rozhlasové stanice na krátkých vlnách z opačné strany zeměkoule).

Teprve v časové stupnici řádu miliard let se objevují rizika, která mohou být kritická (Chapman a Morrison, 1989). Relativně nejmenším nebezpečím jsou budoucí dopady planetek či jader komet na Zemi. Při dnešní úrovni astronomie a kosmonautiky je totiž možné vytipovat s mnohaletým předstihem těleso větších rozměrů (nad 1 km v průměru), které by nás mohlo zasáhnout a vyvolat celosvětovou katastrofu podobnou té, která se odehrála před 65 miliony lety. Jestliže bychom v předstihu řekněme padesát let rozpoznali takové nebezpečí, lze prostředky kosmonautiky zavčas změnit dráhu objektu tak, aby bezpečně a navždy minulo Zemi (Smith, 1992).

Dalším problémem mohou být výrazné změny dráhových parametrů Země. Rozmezí tzv. ekosféry (Hart, 1979, Kasting aj. 1993), v níž je zaručena homeostáze Země, je totiž překvapivě úzké, od 142 do 152 milionů km (střední vzdálenost Země od Slunce činí okrouhle 150 milionů km). Nedávné výpočty na superpočítačích totiž překvapivě ukázaly, že v časové stupnici nad půl miliardy let podléhají parametry zemské dráhy chaotickým vlivům, tj. mohou se znenadání velmi výrazně změnit. Nicméně ten nejdůležitější parametr, tj. střední vzdálenost Země od Slunce, je vůči chaosu výjimečně odolný...

Nakonec se tedy ukazuje, že existuje jeden závažný kosmický fenomén, proti němuž jsme v této chvíli bezmocni, a tím je dlouhodobý vývoj Slunce. Slunce je fakticky mimořádně stabilní termonukleární reaktor, ale přece jen s omezeným množstvím jaderného "paliva" - vodíku. V dlouhodobé perspektivě je proto vývoj Slunce dán souhrou, případně pak rozporem mezi produkcí termonukleární energie v nitru Slunce, a neustále působící vlastní gravitací.

Nejnovější výpočty (Sackmannová aj., 1993) ukázaly, že v budoucnosti se zářivý výkon Slunce bude plynule zvyšovat, a zhruba po miliardě let od současnosti to povede k vypaření vody v pozemských oceánech. Po 3,5 miliardách let od současnosti stoupne zářivý výkon Slunce proti dnešku o plných 40% a to zničí jakýkoliv život na Zemi. Za 6,5 miliard let od současnosti se Slunce změní v červeného obra, tj. jeho budoucí poloměr dosáhne téměř k dnešní dráze Země. Přitom však Slunce ztratí tolik hmoty, že gravitační vazba mezi Sluncem a Zemí zeslábne a Země se vzdálí do oblasti, kde dnes kolem Slunce obíhá Mars (ten se přirozeně rovněž vzdálí od Slunce, takže žádná srážka s Marsem nehrozí). Nicméně i v této větší vzdálenosti bude Země ohřáta natolik, že se celá vypaří. Týž osud přirozeně postihne už dříve Merkur a Venuši a velmi pravděpodobně i Mars.

Epizoda Slunce - červeného obra - astronomicky vzato rychle skončí a zbytek Slunce se zhroutí do kompaktního útvaru - hustého a žhavého bílého trpaslíka. Kolem něho budou dále obíhat velké planety počínaje Jupiterem a ve velké vzdálenosti maličká dvojplaneta Pluto-Charon. V časové stupnici kolem 100 miliard let pak Slunce vychladne na tzv. černého trpaslíka, což by podle současných vědomostí mělo být již neměnné závěrečného stádium jeho vývoje.