The Book of the Damned (5)

02.08.2015 17:22


One of the most extraordinary of phenomena, or alleged phenomena, of psychic research, or alleged research—if in quasi-existence there never has been real research, but only approximations to research that merge away, or that are continuous with, prejudice and convenience—


It's attributed to poltergeists. They're mischievous spirits.

Poltergeists do not assimilate with our own present quasi-system, which is an attempt to correlate denied or disregarded data as phenomena of extra-telluric forces, expressed in physical terms. Therefore I regard poltergeists as evil or false or discordant or absurd—names that we give to various degrees or aspects of the unassimilable, or that which resists attempts to organize, harmonize, systematize, or, in short, to positivize—names that we give to our recognitions of the negative state. I don't care to deny poltergeists, because

p. 175

I suspect that later, when we're more enlightened, or when we widen the range of our credulities, or take on more of that increase of ignorance that is called knowledge, poltergeists may become assimilable. Then they'll be as reasonable as trees. By reasonableness I mean that which assimilates with a dominant force, or system, or a major body of thought—which is, itself, of course, hypnosis and delusion—developing, however, in our acceptance, to higher and higher approximations to realness. The poltergeists are now evil or absurd to me, proportionately to their present unassimilableness, compounded, however, with the factor of their possible future assimilableness.

We lug in the poltergeists, because some of our own data, or alleged data, merge away indistinguishably with data, or alleged data, of them:

Instances of stones that have been thrown, or that have fallen, upon a small area, from an unseen and undetectable source.

London Times, April 27, 1872:

"From 4 o'clock, Thursday afternoon, until half past eleven, Thursday night, the houses, 56 and 58 Reverdy Road, Bermondsey, were assailed with stones and other missiles coming from an unseen quarter. Two children were injured, every window broken, and several articles of furniture were destroyed. Although there was a strong body of policemen scattered in the neighborhood, they could not trace the direction whence the stones were thrown."

"Other missiles" make a complication here. But if the expression means tin cans and old shoes, and if we accept that the direction could not be traced because it never occurred to anyone to look upward—why, we've lost a good deal of our provincialism by this time.

London Times, Sept. 16, 1841:

That, in the home of Mrs. Charton, at Sutton Courthouse, Sutton Lane, Chiswick, windows had been broken "by some unseen agent." Every attempt to detect the perpetrator failed. The mansion was detached and surrounded by high walls. No other building was near it.

The police were called. Two constables, assisted by members of

p. 176

the household, guarded the house, but the windows continued to be broken "both in front and behind the house."

Or the floating islands that are often stationary in the Super-Sargasso Sea; and atmospheric disturbances that sometimes affect them, and bring things down within small areas, upon this earth, from temporarily stationary sources.

Super-Sargasso Sea and the beaches of its floating islands from which I think, or at least accept, pebbles have fallen:

Wolverhampton, England, June, 1860—violent storm—fall of so many little black pebbles that they were cleared away by shoveling (La Sci. Pour Tous, 5-264); great number of small black stones that fell at Birmingham, England, August, 1858—violent storm—said to be similar to some basalt a few leagues from Birmingham (Rept. Brit. Assoc., 1864-37); pebbles described as "common water-worn pebbles" that fell at Palestine, Texas, July 6, 1888—"of a formation not found near Palestine" (W. H. Perry, Sergeant, Signal Corps, Monthly Weather Review, July, 1888); round, smooth pebbles at Kandahor, 1834 (Am. J. Sci., I-26-161); "a number of stones of peculiar formation and shapes, unknown in this neighborhood, fell in a tornado at Hillsboro, Ill., May 18, 1883." (Monthly Weather Review, May, 1883.)

Pebbles from aerial beaches and terrestrial pebbles as products of whirlwinds, so merge in these instances that, though it's interesting to hear of things of peculiar shape that have fallen from the sky, it seems best to pay little attention here, and to find phenomena of the Super-Sargasso Sea remote from the merger:

To this requirement we have three adaptations:

Pebbles that fell where no whirlwind to which to attribute them could be learned of;

Pebbles which fell in hail so large that incredibly could that hail have been formed in this earth's atmosphere;

Pebbles which fell and were, long afterward, followed by more pebbles, as if from some aerial, stationary source, in the same place. In September, 1898, there was a story in a New York newspaper, of lightning—or an appearance of luminosity?—in Jamaica—something had struck a tree: near the tree were found some small pebbles. It was said that the pebbles had fallen from the sky, with the

p. 177

lightning. But the insult to orthodoxy was that they were not angular fragments such as might have been broken from a stony meteorite: that they were "water-worn pebbles."

In the geographical vagueness of a mainland, the explanation "up from one place and down in another" is always good, and is never overworked, until the instances are massed as they are in this book: but, upon this occasion, in the relatively small area of Jamaica, there was no whirlwind findable—however "there in the first place" bobs up.

Monthly Weather Review, August, 1898-363:

That the government meteorologist had investigated: had reported that a tree had been struck by lightning, and that small water-worn pebbles had been found near the tree: but that similar pebbles could be found all over Jamaica.

Monthly Weather Review, September, 1915-446:

Prof. Fassig gives an account of a fall of hail that occurred in Maryland, June 22, 1915: hailstones the size of baseballs "not at all uncommon."

"An interesting, but unconfirmed, account stated that small pebbles were found at the center of some of the larger hail gathered at Annapolis. The young man who related the story offered to produce the pebbles, but has not done so."

A footnote:

"Since writing this, the author states that he has received some of the pebbles."

When a young man "produces" pebbles, that's as convincing as anything else I've ever heard of, though no more convincing than, if having told of ham sandwiches falling from the sky, he should "produce" ham sandwiches. If this "reluctance" be admitted by us, we correlate it with a datum reported by a Weather Bureau observer, signifying that, whether the pebbles had been somewhere aloft a long time or not, some of the hailstones that fell with them, had been. The datum is that some of these hailstones were corn-posed of from twenty to twenty-five layers alternately of clear ice and snow-ice. In orthodox terms I argue that a fair-sized hailstone falls from the clouds with velocity sufficient to warm it so that it would not take on even one layer of ice. To put on twenty layers

p. 178

of ice, I conceive of something that had not fallen at all, but had rolled somewhere, at a leisurely rate, for a long time.

We now have a commonplace datum that is familiar in two respects:

Little, symmetric objects of metal that fell at Orenburg, Russia, September, 1824 (Phil. Mag., 4-8-463).

A second fall of these objects, at Orenburg, Russia, Jan. 25, 1825 (Quar. Jour. Roy. Inst., 1828-1-447).

I now think of the disk of Tarbes, but when first I came upon these data I was impressed only with recurrence, because the objects of Orenburg were described as crystals of pyrites, or sulphate of iron. I had no notion of metallic objects that might have been shaped or molded by means other than crystallization, until I came to Arago's account of these occurrences (Œuvres, 11-644). Here the analysis gives 70 per cent. red oxide of iron, and sulphur and loss by ignition 5 per cent. It seems to me acceptable that iron with considerably less than 5 per cent. sulphur in it is not iron pyrites—then little, rusty iron objects, shaped by some other means, have fallen, four months apart, at the same place. M. Arago expresses astonishment at this phenomenon of recurrence so familiar to us.

Altogether, I find opening before us, vistas of heresies to which I, for one, must shut my eyes. I have always been in sympathy with the dogmatists and exclusionists: that is plain in our opening lines: that to seem to be is falsely and arbitrarily and dogmatically to exclude. It is only that exclusionists who are good in the nineteenth century are evil in the twentieth century. Constantly we feel a merging away into infinitude; but that this book shall approximate to form, or that our data shall approximate to organization, or that we shall approximate to intelligibility, we have to call ourselves back constantly from wandering off into infinitude. The thing that we do, however, is to make our own outline, or the difference between what we include and what we exclude, vague.

The crux here, and the limit beyond which we may not go—very much—is:

Acceptance that there is a region that we call the Super-Sargasso Sea—not yet fully accepted, but a provisional position that has received a great deal of support—

p. 179

But is it a part of this earth, and does it revolve with and over this earth—

Or does it flatly overlie this earth, not revolving with and over this earth—

That this earth does not revolve, and is not round, or roundish, at all, but is continuous with the rest of its system, so that, if one could break away from the traditions of the geographers, one might walk and walk, and come to Mars, and then find Mars continuous with Jupiter?

I suppose some day such queries will sound absurd—the thing will be so obvious—

Because it is very difficult for me to conceive of little metallic objects hanging precisely over a small town in Russia, for four months, if revolving, unattached, with a revolving earth—

It may be that something aimed at that town, and then later took another shot.

These are speculations that seem to me to be evil relatively to these early years in the twentieth century—

Just now, I accept that this earth is—not round, of course: that is very old-fashioned—but roundish, or, at least, that it has what is called form of its own, and does revolve upon its axis, and in an orbit around the sun. I only accept these old traditional notions—

And that above it are regions of suspension that revolve with it: from which objects fall, by disturbances of various kinds, and then, later, fall again, in the same place:

Monthly Weather Review, May, 1884-134:

Report from the Signal Service observer, at Bismarck, Dakota: That, at 9 o'clock, in the evening of May 22, 1884, sharp sounds

were heard throughout the city, caused by a fall of flinty stones striking against windows.

Fifteen hours later another fall of flinty stones occurred at Bismarck.

There is no report of stones having fallen anywhere else.

This is a thing of the ultra-damned. All Editors of scientific publications read the Monthly Weather Review and frequently copy from it. The noise made by the stones of Bismarck, rattling against those windows, may be in a language that aviators will some day

p. 180

interpret: but it was a noise entirely surrounded by silences. Of this ultra-damned thing, there is no mention, findable by me, in any other publication.

The size of some hailstones has worried many meteorologists—but not text-book meteorologists. I know of no more serene occupation than that of writing text-books—though writing for the War Cry, of the Salvation Army, may be equally unadventurous. In the drowsy tranquillity of a text-book, we easily and unintelligently read of dust particles around which icy rain forms, hailstones, in their fall, then increasing by accretion—but in the meteorological journals, we read often of air-spaces nucleating hailstones—

But it's the size of the things. Dip a marble in icy water. Dip and dip and dip it. If you're a resolute dipper, you will, after a while, have an object the size of a baseball—but I think a thing could fall from the moon in that length of time. Also the strata of them. The Maryland hailstones are unusual, but a dozen strata have often been counted. Ferrel gives an instance of thirteen strata. Such considerations led Prof. Schwedoff to argue that some hailstones are not, and cannot, be generated in this earth's atmosphere—that they come from somewhere else. Now, in a relative existence, nothing can of itself be either attractive or repulsive: its effects are functions of its associations or implications. Many of our data have been taken from very conservative scientific sources: it was not until their discordant implications, or irreconcilabilities with the System, were perceived, that excommunication was pronounced against them.

Prof. Schwedoff's paper was read before the British Association (Rept. of 1882, p. 453).

The implication, and the repulsiveness of the implication to the snug and tight little exclusionists of 1882—though we hold out that they were functioning well and ably relatively to 1882—

That there is water—oceans or lakes and ponds, or rivers of it—

that there is water away from, and yet not far-remote from, this earth's atmosphere and gravitation—

The pain of it:

That the snug little system of 1882 would be ousted from its reposefulness—

A whole new science to learn:

p. 181

The Science of Super-Geography—

And Science is a turtle that says that its own shell encloses all things.

So the members of the British Association. To some of them Prof. Schwedoff's ideas were like slaps on the back of an environment-denying turtle: to some of them his heresy was like an offering of meat, raw and dripping, to milk-fed lambs. Some of them bleated like lambs, and some of them turled like turtles. We used to crucify, but now we ridicule: or, in the loss of vigor of all progress, the spike has etherealized into the laugh.

Sir William Thomson ridiculed the heresy, with the phantomosities of his era:

That all bodies, such as hailstones, if away from this earth's atmosphere, would have to move at planetary velocity—which would be positively reasonable if the pronouncements of St. Isaac were anything but articles of faith—that a hailstone falling through this earth's atmosphere, with planetary velocity, would perform 13,000 times as much work as would raise an equal weight of water one degree centigrade, and therefore never fall as a hailstone at all; be more than melted—super-volatilized

These turls and these bleats of pedantry—though we insist that, relatively to 1882, these turls and bleats should be regarded as respectfully as we regard rag dolls that keep infants occupied and noiseless—it is the survival of rag dolls into maturity that we object to—so these pious and naïve ones who believed that 13,000 times something could have—that is, in quasi-existence—an exact and calculable resultant, whereas there is—in quasi-existence—nothing that can, except by delusion and convenience, be called a unit, in the first place—whose devotions to St. Isaac required blind belief in formulas of falling bodies—

Against data that were piling up, in their own time, of slow- falling meteorites; "milk warm" ones admitted even by Farrington and Merrill; at least one icy meteorite nowhere denied by the present orthodoxy, a datum as accessible to Thomson, in 1882, as it is now to us, because it was an occurrence of 1860. Beans and needles and tacks and a magnet. Needles and tacks adhere to and systematize relatively to a magnet, but, if some beans, too, be caught

p. 182

up, they are irreconcilables to this system and drop right out of it. A member of the Salvation Army may hear over and over data that seem so memorable to an evolutionist. It seems remarkable that they do not influence him—one finds that he cannot remember them. It is incredible that Sir William Thomson had never heard of slow-falling, cold meteorites. It is simply that he had no power to remember such irreconcilabilities.

And then Mr. Symons again. Mr. Symons was a man who probably did more for the science of meteorology than did any other man of his time: therefore he probably did more to hold back the science of meteorology than did any other man of his time. In Nature, 41-135, Mr. Symons says that Prof. Schwedoff's ideas are "very droll."

I think that even more amusing is our own acceptance that, not very far above this earth's surface, is a region that will be the subject of a whole new science—super-geography—with which we shall immortalize ourselves in the resentments of the schoolboys of the future—

Pebbles and fragments of meteors and things from Mars and Jupiter and Azuria: wedges, delayed messages, cannon balls, bricks, nails, coal and coke and charcoal and offensive old cargoes—things that coat in ice in some regions and things that get into areas so warm that they putrefy—or that there are all the climates of geography in super-geography. I shall have to accept that, floating in the sky of this earth, there often are fields of ice as extensive as those on the Arctic Ocean—volumes of water in which are many fishes and frogs—tracts of land covered with caterpillars—

Aviators of the future. They fly up and up. Then they get out and walk. The fishing's good: the bait's right there. They find messages from other worlds—and within three weeks there's a big trade worked up in forged messages. Sometime I shall write a guide book to the Super-Sargasso Sea, for aviators, but just at present there wouldn't be much call for it.

We now have more of our expression upon hail as a concomitant, or more data of things that have fallen from the sky, with hail.

In general, the expression is:

These things may have been raised from some other part of the

p. 183

earth's surface, in whirlwinds, or may not have fallen, and may have been upon the ground, in the first place—but were the hailstones found with them, raised from some other part of the earth's surface, or were the hailstones upon the ground, in the first place?

As I said before, this expression is meaningless as to a few instances; it is reasonable to think of some coincidence between the fall of hail and the fall of other things: but, inasmuch as there have been a good many instances,—we begin to suspect that this is not so much a book we're writing as a sanitarium for overworked coincidences. If not conceivably could very large hailstones and lumps of ice form in this earth's atmosphere, and so then had to come from external regions, then other things in or accompanying very large hailstones and lumps of ice came from external regions—which worries us a little: we may be instantly translated to the Positive Absolute.

Cosmos, 13-120, quotes a Virginia newspaper, that fishes said to have been catfishes, a foot long, some of them, had fallen, in 1853, at Norfolk, Virginia, with hail.

Vegetable débris, not only nuclear, but frozen upon the surfaces of large hailstones, at Toulouse, France, July 28, 1874. (La Science Pour Tous, 1874-270.)

Description of a storm, at Pontiac, Canada, July 11, 1864, in which it is said that it was not hailstones that fell, but "pieces of ice, from half an inch to over two inches in diameter" (Canadian Naturalist, 2-1-308):

"But the most extraordinary thing is that a respectable farmer, of undoubted veracity, says he picked up a piece of hail, or ice, in the center of which was a small green frog."

Storm at Dubuque, Iowa, June 16, 1882, in which fell hailstones and pieces of ice (Monthly Weather Review, June, 1882):

"The foreman of the Novelty Iron Works, of this city, states that in two large hailstones melted by him were found small living frogs." But the pieces of ice that fell upon this occasion had a peculiarity that indicates—though by as bizarre an indication as any we've had yet—that they had been for a long time motionless or floating somewhere. We'll take that up soon.

Living Age, 52-186:

p. 184

That, June 30, 1841, fishes, one of which was ten inches long, fell at Boston; that, eight days later, fishes and ice fell at Derby.

In Timb's Year Book, 1842-275, it is said that, at Derby, the fishes had fallen in enormous numbers; from half an inch to two inches long, and some considerably larger. In the Athenæum, 1841-542, copied from the Sheffield Patriot, it is said that one of the fishes weighed three ounces. In several accounts, it is said that, with the fishes, fell many small frogs and "pieces of half-melted ice." We are told that the frogs and the fishes had been raised from some other part of the earth's surface, in a whirlwind; no whirlwind specified; nothing said as to what part of the earth's surface comes ice, in the month of July—interests us that the ice is described as "half-melted." In the London Times, July 15, 1841, it is said that the fishes were sticklebacks; that they had fallen with ice and small frogs, many of which had survived the fall. We note that, at Dunfermline, three months later (Oct. 7, 1841) fell many fishes, several inches in length, in a thunderstorm. (London Times, Oct. 12, 1841.)

Hailstones, we don't care so much about. The matter of stratification seems significant, but we think more of the fall of lumps of ice from the sky, as possible data of the Super-Sargasso Sea:

Lumps of ice, a foot in circumference, Derbyshire, England, May 12, 1811 (Annual Register, 1811-54); cuboidal mass, six inches in diameter, that fell at Birmingham, 26 days later (Thomson, Intro. to Meteorology, p. 179); size of pumpkins, Bungalore, India, May 22, 1851 (Rept. Brit. Assoc., 1855-35); masses of ice of a pound and a half each, New Hampshire, Aug. 13, 1851 (Lummis, Meteorology, p. 129); masses of ice, size of a man's head, in the Delphos tornado (Ferrel, Popular Treatise, p. 428); large as a man's hand, killing thousands of sheep, Texas, May 3, 1877 (Monthly Weather Review, May, 1877); "pieces of ice so large that they could not be grasped in one hand," in a tornado, in Colorado, June 24, 1877 (Monthly Weather Review, June, 1877); lumps of ice four and a half inches long, Richmond, England, Aug. 2, 1879 (Symons’ Met. Mag., 14-100); mass of ice, 21 inches in circumference that fell with hail, Iowa, June, 1881 (Monthly Weather Review, June, 1881); "pieces of ice" eight inches long, and an inch and a half thick, Davenport, Iowa, Aug. 30, 1882 (Monthly Weather Review, Aug.,

p. 185

[paragraph continues] 1882); lump of ice size of a brick; weight two pounds, Chicago, July 12, 1883 (Monthly Weather Review, July, 1883); lumps of ice that weighed one pound and a half each, India, May (?), 1888 (Nature, 37-42); lump of ice weighing four pounds, Texas, Dec. 6, 1893 (Sc. Am., 68-58); lumps of ice one pound in weight, Nov. 14, 1901, in a tornado, Victoria (Meteorology of Australia, p. 34).

Of course it is our acceptance that these masses not only accompanied tornadoes, but were brought down to this earth by tornadoes.

Flammarion, The Atmosphere, p. 34:

Block of ice, weighing four and a half pounds that fell at Cazorta, Spain, June 15, 1829; block of ice, weighing eleven pounds, at Cette, France, October, 1844; mass of ice three feet long, three feet wide, and more than two feet thick, that fell, in a storm, in Hungary, May 8, 1802.

Scientific American, 47-119:

That, according to the Salina Journal, a mass of ice weighing about 80 pounds had fallen from the sky, near Salina, Kansas, August, 1882. We are told that Mr. W. J. Hagler, the North Santa Fé merchant became possessor of it, and packed it in sawdust in his store.

London Times, April 7, 1860:

That, upon the 16th of March, 1860, in a snowstorm, in Upper Wasdale, blocks of ice, so large that at a distance they looked like a flock of sheep, had fallen.

Rept. Brit. Assoc., 1851-32:

That a mass of ice about a cubic yard in size had fallen at Candeish, India, 1828.

Against these data, though, so far as I know, so many of them have never been assembled together before, there is a silence upon the part of scientific men that is unusual. Our Super-Sargasso Sea may not be an unavoidable conclusion, but arrival upon this earth of ice from external regions does seem to be—except that there must be, be it ever so faint, a merger. It is in the notion that these masses of ice are only congealed hailstones. We have data against this notion, as applied to all our instances, but the explanation has been offered, and, it seems to me, may apply in some instances. In the Bull. Soc. Astro. de France, 20-245, it is said of blocks of ice the

p. 186

size of decanters that had fallen at Tunis that they were only masses of congealed hailstones.

London Times, Aug. 4, 1857:

That a block of ice, described as "pure" ice, weighing 25 pounds, had been found in the meadow of Mr. Warner, of Cricklewood. There had been a storm the day before. As in some of our other instances, no one had seen this object fall from the sky. It was found after the storm: that's all that can be said about it.

Letter from Capt. Blakiston, communicated by Gen. Sabine, to the Royal Society (London Roy. Soc. Proc., 10-468):

That, Jan. 14, 1860, in a thunderstorm, pieces of ice had fallen upon Capt. Blakiston's vessel—that it was not hail. "It was not hail, but irregular-shaped pieces of solid ice of different dimensions, up to the size of half a brick."

According to the Advertiser-Scotsman, quoted by the Edinburgh New Philosophical Magazine, 47-371, an irregular-shaped mass of ice fell at Ord, Scotland, August, 1849, after "an extraordinary peal of thunder."

It is said that this was homogeneous ice, except in a small part, which looked like congealed hailstones.

The mass was about 20 feet in circumference.

The story, as told in the London Times, Aug. 14, 1849, is that, upon the evening of the 13th of August, 1849, after a loud peal of thunder, a mass of ice said to have been 20 feet in circumference, had fallen upon the estate of Mr. Moffat, of Balvullich, Ross-shire. It is said that this object fell alone, or without hailstones.

Altogether, though it is not so strong for the Super-Sargasso Sea, I think this is one of our best expressions upon external origins. That large blocks of ice could form in the moisture of this earth's atmosphere is about as likely as that blocks of stone could form in a dust whirl. Of course, if ice or water comes to this earth from external sources, we think of at least minute organisms in it, and on, with our data, to frogs, fishes; on to anything that's thinkable, coming from external sources. It's of great importance to us to accept that large lumps of ice have fallen from the sky, but what we desire most—perhaps because of our interest in its archæologic and paleontologic treasures—is now to be through with tentativeness

p. 187

and probation, and to take the Super-Sargasso Sea into full acceptance in our more advanced fold of the chosen of this twentieth century.

In the Report of the British Association, 1855-37, it is said that, at Poorhundur, India, Dec. 11, 1854, flat pieces of ice, many of them weighing several pounds—each, I suppose—had fallen from the sky. They are described as "large ice-flakes."

Vast fields of ice in the Super-Arctic regions, or strata, of the Super-Sargasso Sea. When they break up, their fragments are flake-like. In our acceptance, there are aerial ice-fields that are remote from this earth; that break up, fragments grinding against one another, rolling in vapor and water, of different constituency in different regions, forming slowly as stratified hailstones—but that there are ice-fields near this earth, that break up into just such flat pieces of ice as cover any pond or river when ice of a pond or river is broken, and are sometimes soon precipitated to the earth, in this familiar flat formation.

Symons’ Met. Mag., 43-154:

A correspondent writes that, at Braemar, July 2, 1908, when the sky was clear overhead, and the sun shining, flat pieces of ice fell—from somewhere. The sun was shining, but something was going on somewhere: thunder was heard.

Until I saw the reproduction of a photograph in the Scientific American, Feb. 21, 1914, I had supposed that these ice-fields must be, say, at least ten or twenty miles away from this earth, and invisible, to terrestrial observers, except as the blurs that have so often been reported by astronomers and meteorologists. The photograph published by the Scientific American is of an aggregation supposed to be clouds, presumably not very high, so clearly detailed are they. The writer says that they looked to him like "a field of broken ice." Beneath is a picture of a conventional field of ice, floating ordinarily in water. The resemblance between the two pictures is striking—nevertheless, it seems to me incredible that the first of the photographs could be of an aerial ice-field, or that gravitation could cease to act at only a mile or so from this earth's surface—


p. 188

The exceptional: the flux and vagary of all things.

Or that normally this earth's gravitation extends, say, ten or fifteen miles outward—but that gravitation must be rhythmic.

Of course, in the pseudo-formulas of astronomers, gravitation as a fixed quantity is essential. Accept that gravitation is a variable force, and astronomers deflate, with a perceptible hissing sound, into the punctured condition of economists, biologists, meteorologists, and all the others of the humbler divinities, who can admittedly offer only insecure approximations.

We refer all who would not like to hear the hiss of escaping arrogance, to Herbert Spencer's chapters upon the rhythm of all phenomena.

If everything else—light from the stars, heat from the sun, the winds and the tides; forms and colors and sizes of animals; demands and supplies and prices; political opinions and chemic reactions and religious doctrines and magnetic intensities and the ticking of clocks; and arrival and departure of the seasons—if everything else is variable, we accept that the notion of gravitation as fixed and formulable is only another attempted positivism, doomed, like all other illusions of realness in quasi-existence. So it is intermediatism to accept that, though gravitation may approximate higher to invariability than do the winds, for instance, it must be somewhere between the Absolutes of Stability and Instability. Here then we are not much impressed with the opposition of physicists and astronomers, fearing, a little mournfully, that their language is of expiring sibilations.

So then the fields of ice in the sky, and that, though usually so far away as to be mere blurs, at times they come close enough to be seen in detail. For description of what I call a "blur," see Pop. Sci. News, February, 1884—sky, in general, unusually clear, but, near the sun, "a white, slightly curdled haze, which was dazzlingly bright."

We accept that sometimes fields of ice pass between the sun and the earth: that many strata of ice, or very thick fields of ice, or superimposed fields would obscure the sun—that there have been occasions when the sun was eclipsed by fields of ice:

Flammarion, The Atmosphere, p. 394:

p. 189

That a profound darkness came upon the city of Brussels, June 18, 1839:

There fell flat pieces of ice, an inch long.

Intense darkness at Aitkin, Minn., April 2, 1889: sand and "solid chunks of ice" reported to have fallen (Science, April 19, 1889).

In Symons’ Meteorological Magazine, 32-172, are outlined rough-edged but smooth-surfaced pieces of ice that fell at Manassas, Virginia, Aug. 10, 1897. They look as much like the roughly broken fragments of a smooth sheet of ice—as ever have roughly broken fragments of a smooth sheet of ice looked. About two inches across, and one inch thick. In Cosmos, 3-116, it is said that, at Rouen, July 5, 1853, fell irregular-shaped pieces of ice, about the size of a hand, described as looking as if all had been broken from one enormous block of ice. That, I think, was an aerial iceberg. In the awful density, or almost absolute stupidity of the 19th century, it never occurred to anybody to look for traces of polar bears or of seals upon these fragments.

Of course, seeing what we want to see, having been able to gather these data only because they are in agreement with notions formed I in advance, we are not so respectful to our own notions as to a similar impression forced upon an observer who had no theory or acceptance to support. In general, our prejudices see and our prejudices investigate, but this should not be taken as an absolute.

Monthly Weather Review, July, 1894:

That, from the Weather Bureau, of Portland, Oregon, a tornado, of June 3, 1894, was reported.

Fragments of ice fell from the sky.

They averaged three to four inches square, and about an inch thick. In length and breadth they had the smooth surfaces required by our acceptance: and, according to the writer in the Review, "gave the impression of a vast field of ice suspended in the atmosphere, and suddenly broken into fragments about the size of the palm of the hand."

This datum, profoundly of what we used to call the "damned," or before we could no longer accept judgment, or cut and dried condemnation by infants, turtles, and lambs, was copied—but without comment—in the Scientific American, 71-371.

p. 190

Our theology is something like this:

Of course we ought to be damned—but we revolt against adjudication by infants, turtles, and lambs.

We now come to some remarkable data in a rather difficult department of super-geography. Vast fields of aerial ice. There's a lesson to me in the treachery of the imaginable. Most of our opposition is in the clearness with which the conventional, but impossible, becomes the imaginable, and then the resistant to modifications. After it had become the conventional with me, I conceived clearly of vast sheets of ice, a few miles above this earth—then the shining of the sun, and the ice partly melting—that note upon the ice that fell at Derby—water trickling and forming icicles upon the lower surface of the ice sheet. I seemed to look up and so clearly visualized those icicles hanging like stalactites from a flat-roofed cave, in white calcite. Or I looked up at the under side of an aerial ice-lump, and seemed to see a papillation similar to that observed by a calf at times. But then—but then—if icicles should form upon the under side of a sheet of aerial ice, that would be by the falling of water toward this earth; an icicle is of course an expression of gravitation—and, if water melting from ice should fall toward this earth, why not the ice itself fall before an icicle could have time to form? Of course, in quasi-existence, where everything is a paradox, one might argue that the water falls, but the ice does not, because the ice is heavier—that is, in masses. That notion, I think, belongs in a more advanced course than we are taking at present.

Our expression upon icicles:

A vast field of aerial ice—it is inert to this earth's gravitation—but by universal flux and variation, part of it sags closer to this earth, and is susceptible to gravitation—by cohesion with the main mass, this part does not fall, but water melting from it does fall, and forms icicles—then, by various disturbances, this part sometimes falls in fragments that are protrusive with icicles.

Of the ice that fell, some of it enclosing living frogs, at Dubuque, Iowa, June 16, 1882, it is said (Monthly Weather Review, June, 1882) that there were pieces from one to seventeen inches in circumference, the largest weighing one pound and three-quarters

p. 191

that upon some of them were icicles half an inch in length. We emphasize that these objects were not hailstones.

The only merger is that of knobby hailstones, or of large hailstones with protuberances wrought by crystallization: but that is no merger with terrestrial phenomena, and such formations are unaccountable to orthodoxy; or it is incredible that hail could so crystallize—not forming by accretion—in the fall of a few seconds. For an account of such hailstones, see Nature, 61-594. Note the size—"some of them the size of turkeys’ eggs."

It is our expression that sometimes the icicles themselves have fallen, as if by concussion, or as if something had swept against the under side of an aerial ice floe, detaching its papillations. Monthly Weather Review, June, 1889:

That, at Oswego, N. Y., June 11, 1889, according to the Turin (N. Y.) Leader, there fell, in a thunderstorm, pieces of ice that "resembled the fragments of icicles."

Monthly Weather Review, 29-506:

That on Florence Island, St. Lawrence River, Aug. 8, 1901, with ordinary hail, fell pieces of ice "formed like icicles, the size and shape of lead pencils that had been cut into sections about three-eighths of an inch in length."

So our data of the Super-Sargasso Sea, and its Arctic region: and, for weeks at a time, an ice field may hang motionless over a part of this earth's surface—the sun has some effect upon it, but not much until late in the afternoon, I should say—part of it has sagged, but is held up by cohesion with the main mass—whereupon we have such an occurrence as would have been a little uncanny to us once upon a time—or fall of water from a cloudless sky, day after day, in one small part of this earth's surface, late in the afternoon, when the sun's rays had had time for their effects:

Monthly Weather Review, October, 1886:

That, according to the Charlotte Chronicle, Oct. 21, 1886, for three weeks there had been a fall of water from the sky, in Charlotte, N. C., localized in one particular spot, every afternoon, about three o'clock; that, whether the sky was cloudy or cloudless, the water or rain fell upon a small patch of land between two trees and nowhere else.

p. 192

This is the newspaper account, and, as such, it seems in the depths of the unchosen, either by me or any other expression of the Salvation Army. The account by the Signal Service observer, at Charlotte, published in the Review, follows:

"An unusual phenomenon was witnessed on the 21st: having been informed that, for some weeks prior to date, rain had been falling daily, after 3 P.M., on a particular spot, near two trees, corner of 9th and D streets, I visited the place, and saw precipitation in the form of rain drops at 4:47 and 4:55 P.M., while the sun was shining brightly. On the 22nd, I again visited the place, and from 4:05 to 4:25 P.M., a light shower of rain fell from a cloudless sky… . Sometimes the precipitation falls over an area of half an acre, but always appears to center at these two trees, and when lightest occurs there only."




We see conventionally. It is not only that we think and act and speak and dress alike, because of our surrender to social attempt at Entity, in which we are only super-cellular. We see what it is "proper" that we should see. It is orthodox enough to say that a horse is not a horse, to an infant—any more than is an orange an orange to the unsophisticated. It's interesting to walk along a street sometimes and look at things and wonder what they'd look like, if we hadn't been taught to see horses and trees and houses as horses and trees and houses. I think that to super-sight they are local stresses merging indistinguishably into one another, in an all-inclusive nexus.

I think that it would be credible enough to say that many times have Monstrator and Elvera and Azuria crossed telescopic fields of vision, and were not even seen—because it wouldn't be proper to see them; it wouldn't be respectable, and it wouldn't be respectful: it would be insulting to old bones to see them: it would bring on evil influences from the relics of St. Isaac to see them.

p. 193

But our data:

Of vast worlds that are orbitless, or that are navigable, or that are adrift in inter-planetary tides and currents: the data that we shall have of their approach, in modern times, within five or six miles of this earth—

But then their visits, or approaches, to other planets, or to other of the few regularized bodies that have surrendered to the attempted Entity of this solar system as a whole—

The question that we can't very well evade:

Have these other worlds, or super-constructions, ever been seen by astronomers?

I think there would not be much approximation to realness in taking refuge in the notion of astronomers who stare and squint and see only that which it -is respectable and respectful to see. It is all very well to say that astronomers are hypnotics, and that an astronomer looking at the moon is hypnotized by the moon, but our acceptance is that the bodies of this present expression often visit the moon, or cross it, or are held in temporary suspension near it—then some of them must often have been within the diameter of an astronomer's hypnosis.

Our general expression:

That, upon the oceans of this earth, there are regularized vessels, but also that there are tramp vessels:

That, upon the super-ocean, there are regularized planets, but also that there are tramp worlds:

That astronomers are like mercantile purists who would deny commercial vagabondage.

Our acceptance is that vast celestial vagabonds have been excluded by astronomers, primarily because their irresponsibilities are an affront to the pure and the precise, or to attempted positivism; and secondarily because they have not been seen so very often. The planets steadily reflect the light of the sun: upon this uniformity a system that we call Primary Astronomy has been built up; but now the subject-matter of Advanced Astronomy is data of celestial phenomena that are sometimes light and sometimes dark, varying like some of the satellites of Jupiter, but with a wider range. However, light or dark, they have been seen and reported so often that the

p. 194

only important reason for their exclusion is—that they don't fit in.

With dark bodies that are probably external to our own solar system, I have, in the provincialism that no one can escape, not much concern. Dark bodies afloat in outer space would have been damned a few years ago, but now they're sanctioned by Prof. Barnard—and, if he says they're all right, you may think of them without the fear of doing something wrong or ridiculous—the close kinship we note so often between the evil and the absurd—I suppose by the ridiculous I mean the froth of evil. The dark companion of Algol, for instance. Though that's a clear case of celestial miscegenation, the purists, or positivists, admit that's so. In the Proceedings of the National Academy of Science, 1915-394, Prof. Barnard writes of an object—he calls it an "object"—in Cephus. His idea is that there are dark, opaque bodies outside this solar system. But in the Astrophysical Journal, 1916-1, he modifies into regarding them as "dark nebulæ." That's not so interesting.

We accept that Venus, for instance, has often been visited by other worlds, or by super-constructions, from which come ciders and coke and coal; that sometimes these things have reflected light and have been seen from this earth—by professional astronomers. It will be noted that throughout this chapter our data are accursed Brahmins—as, by hypnosis and inertia, we keep on and keep on saying, just as a good many of the scientists of the 19th century kept on and kept on admitting the power of the system that preceded them—or Continuity would be smashed. There's a big chance here for us to be instantaneously translated to the Positive Absolute—oh, well—

What I emphasize here is that our damned data are observations by astronomers of the highest standing, excommunicated by astronomers of similar standing—but backed up by the dominant spirit of their era—to which all minds had to equilibrate or be negligible, unheard, submerged. It would seem sometimes, in this book, as if our revolts were against the dogmatisms and pontifications of single scientists of eminence. This is only a convenience, because it seems necessary to personify. If we look over Philosophical Transactions, or the publications of the Royal Astronomical Society, for instance, we see that Herschel, for instance, was as powerless as any boy stargazer,

p. 195

to enforce acceptance of any observation of his that did not harmonize with the system that was growing up as independently of him and all other astronomers, as a phase in the development of an embryo compels all cells to take on appearances concordantly with the design and the predetermined progress and schedule of the whole.

Visitors to Venus:

Evans, Ways of the Planets, p. 140:

That, in 1645, a body large enough to look like a satellite was seen near Venus. Four times in the first half of the 18th century, a similar observation was reported. The last report occurred in 1767.

A large body has been seen—seven times, according to Science Gossip, 1886-178—near Venus. At least one astronomer, Houzeau, accepted these observations and named the—world, planet, super-construction—"Neith." His views are mentioned "in passing, but without endorsement," in the Trans. N. Y. Acad., 5-249.

Houzeau or someone writing for the magazine-section of a Sunday newspaper—outer darkness for both alike. A new satellite in this solar system might be a little disturbing—though the formulas of Laplace, which were considered final in his day, have survived the admittance of five or six hundred bodies not included in those formulas—a satellite to Venus might be a little disturbing, but would be explained—but a large body approaching a planet—staying awhile—going away—coming back some other time—anchoring, as it were—

Azuria is pretty bad, but Azuria is no worse than Neith.

Astrophysical Journal, 1-127:

A light-reflecting body, or a bright spot near Mars: seen Nov. 25, 1894, by Prof. Pickering and others, at the Lowell Observatory, above an unilluminated part of Mars—self-luminous, it would seem—thought to have been a cloud—but estimated to have been about twenty miles away from the planet.

Luminous spot seen moving across the disk of Mercury, in 1799, by Harding and Schroeter. (Monthly Notices of the R.A.S., 38-338.)

In the first Bulletin issued by the Lowell Observatory, in 1903, Prof. Lowell describes a body that was seen on the terminator of

p. 196

[paragraph continues] Mars, May 20, 1903. On May 27, it was "suspected." If still there, it had moved, we are told, about 300 miles—"probably a dust cloud."

Very conspicuous and brilliant spots seen on the disk of Mars, October and November, 1911. (Popular Astronomy, Vol. 19, No. 10)

So one of them accepted six or seven observations that were in agreement, except that they could not be regularized, upon a world—planet—satellite—and he gave it a name. He named it "Neith."

Monstrator and Elvera and Azuria and Super-Romanimus—

Or heresy and orthodoxy and the oneness of all quasiness, and our ways and means and methods are the very same. Or, if we name things that may not be, we are not of lonely guilt in the nomenclature of absences

But now Leverrier and "Vulcan."

Leverrier again.

Or to demonstrate the collapsibility of a froth, stick a pin in the largest bubble of it. Astronomy and inflation: and by inflation we mean expansion of the attenuated. Or that the science of Astronomy is a phantom-film distended with myth-stuff—but always our acceptance that it approximates higher to substantiality than did the system that preceded it.

So Leverrier and the "planet Vulcan."

And we repeat, and it will do us small good to repeat. If you be of the masses that the astronomers have hypnotized—being themselves hypnotized, or they could not hypnotize others—or that the hypnotist's control is not the masterful power that it is popularly supposed to be, but only transference of state from one hypnotic to another—

If you be of the masses that the astronomers have hypnotized, you will not be able even to remember. Ten pages from here, and Leverrier and the "planet Vulcan" will have fallen from your mind, like beans from a magnet, or like data of cold meteorites from the mind of a Thomson.

Leverrier and the "planet Vulcan."

And much the good it will do us to repeat.

But at least temporarily we shall have an impression of a historic fiasco, such as, in our acceptance, could occur only in a quasi-existence.

p. 197

In 1859, Dr. Lescarbault, an amateur astronomer, of Orgères, France, announced that, upon March 26, of that year, he had seen a body of planetary size cross the sun. We are in a subject that is now as unholy to the present system as ever were its own subjects to the system that preceded it, or as ever were slanders against miracles to the preceding system. Nevertheless few text-books go so far as quite to disregard this tragedy. The method of the systematists is slightingly to give a few instances of the unholy, and dispose of the few. If it were desirable to them to deny that there are mountains upon this earth, they would record a few observations upon some slight eminences near Orange, N. J., but say that commuters, though estimable persons in several ways, are likely to have their observations mixed. The text-books casually mention a few of the "supposed" observations upon "Vulcan," and then pass on.

Dr. Lescarbault wrote to Leverrier, who hastened to Orgères—

Because this announcement assimilated with his own calculations upon a planet between Mercury and the sun—

Because this solar system itself has never attained positiveness in the aspect of Regularity: there are to Mercury, as there are to Neptune, phenomena irreconcilable with the formulas, or motions that betray influence by something else.

We are told that Leverrier "satisfied himself as to the substantial accuracy of the reported observation." The story of this investigation is told in Monthly Notices, 20-98. It seems too bad to threaten the naïve little thing with our rude sophistications, but it is amusingly of the ingenuousness of the age from which present dogmas have survived. Lescarbault wrote to Leverrier. Leverrier hastened to Orgères. But he was careful not to tell Lescarbault who he was. Went right in and "subjected Dr. Lescarbault to a very severe cross-examination"—just the way you or I may feel at liberty to go into anybody's home and be severe with people—"pressing him hard step by step"—just as anyone might go into someone else's house and press him hard, though unknown to the hard-pressed one. Not until he was satisfied, did Leverrier reveal his identity. I suppose Dr. Lescarbault expressed astonishment. I think there's something utopian about this: it's so unlike the stand-offishness of New York life.

p. 198

Leverrier gave the name "Vulcan" to the object that Dr. Lescarbault had reported.

By the same means by which he is, even to this day, supposed—by the faithful—to have discovered Neptune, he had already announced the probable existence of an Intra-Mercurial body, or group of bodies. He had five observations besides Lescarbault's upon something that had been seen to cross the sun. In accordance with the mathematical hypnoses of his era, he studied these six transits. Out of them he computed elements giving "Vulcan" a period of about 20 days, or a formula for heliocentric longitude at any time.

But he placed the time of best observation away up in 1877.

But even so, or considering that he still had probably a good many years to live, it may strike one that he was a little rash—that is if one has not gone very deep into the study of hypnoses—that, having "discovered" Neptune by a method which, in our acceptance, had no more to recommend it than had once equally well-thought-of methods of witch-finding, he should not have taken such chances: that if he was right as to Neptune, but should be wrong as to "Vulcan," his average would be away below that of most fortune-tellers, who could scarcely hope to do business upon a fifty per cent. basis—all that the reasoning of a tyro in hypnoses.

The date:

March 22, 1877.

The scientific world was up on its hind legs nosing the sky. The thing had been done so authoritatively. Never a pope had said a thing with more of the seeming of finality. If six observations correlated, what more could be asked? The Editor of Nature, a week before the predicted event, though cautious, said that it is difficult to explain how six observers, unknown to one another, could have data that could be formulated, if they were not related phenomena.

In a way, at this point occurs the crisis of our whole book.

Formulas are against us.

But can astronomic formulas, backed up by observations in agreement, taken many years apart, calculated by a Leverrier, be as meaningless, in a positive sense, as all other quasi-things that we have encountered so far?

The preparations they made, before March 22, 1877. In England,

p. 199

the Astronomer Royal made it the expectation of his life: notified observers at Madras, Melbourne, Sydney, and New Zealand, and arranged with observers in Chili and the United States. M. Struve had prepared for observations in Siberia and Japan—

March 22, 1877—

Not absolutely, hypocritically, I think it's pathetic, myself. If anyone should doubt the sincerity of Leverrier, in this matter, we note, whether it has meaning or not, that a few months later he died.

I think we'll take up Monstrator, though there's so much to this subject that we'll have to come back.

According to the Annual Register, 9-120, upon the 9th of August, 1762, M. de Rostan, of Basle, France, was taking altitudes of the sun, at Lausanne. He saw a vast, spindle-shaped body, about three of the sun's digits in breadth and nine in length, advancing slowly across the disk of the sun, or "at no more than half the velocity with which the ordinary solar spots move." It did not disappear until the 7th of September, when it reached the sun's limb. Because of the spindle-like form, I incline to think of a super-Zeppelin, but another observation, which seems to indicate that it was a world, is that, though it was opaque, and "eclipsed the sun," it had around it a kind of nebulosity—or atmosphere? A penumbra would ordinarily be a datum of a sun spot, but there are observations that indicate that this object was at a considerable distance from the sun:

It is recorded that another observer, at Paris, watching the sun, at this time, had not seen this object;

But that M. Croste, at Sole, about forty-five German leagues northward from Lausanne, had seen it, describing the same spindle-form, but disagreeing a little as to breadth. Then comes the important point: that he and M. de Rostan did not see it upon the same part of the sun. This, then, is parallax, and, compounded with invisibility at Paris, is great parallax—or that, in the course of a month, in the summer of 1762, a large, opaque, spindle-shaped body traversed the disk of the sun, but at a great distance from the sun. The writer in the Register says: "In a word, we know of nothing to have recourse to, in the heavens, by which to explain this phenomenon." I suppose he was not a hopeless addict to explaining. Extraordinary—

p. 200

we fear he must have been a man of loose habits in some other respects.

As to us—


In the Monthly Notices of the R.A.S., February, 1877, Leverrier, who never lost faith, up to the last day, gives the six observations upon an unknown body of planetary size, that he had formulated:

Fritsche, Oct. 10, 1802; Stark, Oct. 9, 1819; De Cuppis, Oct. 30, 1839; Sidebotham, Nov. 12, 1849; Lescarbault, March 26, 1859; Lummis, March 20, 1862.

If we weren't so accustomed to Science in its essential aspect of Disregard, we'd be mystified and impressed, like the Editor of Nature, with the formulation of these data: agreement of so many instances would seem incredible as a coincidence: but our acceptance is that, with just enough disregard, astronomers and fortune-tellers can formulate anything—or we'd engage, ourselves, to formulate periodicities in the crowds in Broadway—say that every Wednesday morning, a tall man, with one leg and a black eye, carrying a rubber plant, passes the Singer Building, at quarter past ten o'clock. Of course it couldn't really be done, unless such a man did have such periodicity, but if some Wednesday mornings it should be a small child lugging a barrel, or a fat negress with a week's wash, by ordinary disregard that would be prediction good enough for the kind of quasi-existence we're in.

So whether we accuse, or whether we think that the word "accuse" over-dignifies an attitude toward a quasi-astronomer, or mere figment in a super-dream, our acceptance is that Leverrier never did formulate observations—

That he picked out observations that could be formulated—

That of this type are all formulas—

That, if Leverrier had not been himself helplessly hypnotized, or if he had had in him more than a tincture of realness, never could he have been beguiled by such a quasi-process: but that he was hypnotized, and so extended, or transferred, his condition to others, that upon March 22, 1877, he had this earth bristling with telescopes, with the rigid and almost inanimate forms of astronomers behind them—

p. 201

And not a blessed thing of any unusuality was seen upon that day or succeeding days.

But that the science of Astronomy suffered the slightest in prestige?

It couldn't. The spirit of 1877 was behind it. If, in an embryo, some cells should not live up to the phenomena of their era, the others will sustain the scheduled appearances. Not until an embryo enters the mammalian stage are cells of the reptilian stage false cells.

It is our acceptance that there were many equally authentic re' ports upon large planetary bodies that had been seen near the sun; that, of many, Leverrier picked out six; not then deciding that all the other observations related to still other large, planetary bodies, but arbitrarily, or hypnotically, disregarding—or heroically disregarding—every one of them—that to formulate at all he had to exclude falsely. The dénouement killed him, I think. I'm not at all inclined to place him with the Grays and Hitchcocks and Symonses. I'm not, because, though it was rather unsportsmanlike to put the date so far ahead, he did give a date, and he did stick to it with such a high approximation—

I think Leverrier was translated to the Positive Absolute.

The disregarded:

Observation, of July 26, 1819, by Gruthinson—but that was of two bodies that crossed the sun together—

Nature, 14-469:

That, according to the astronomer, J. R. Hind, Benjamin Scott, City Chamberlain of London, and Mr. Wray, had, in 1847, seen a body similar to "Vulcan" cross the sun.

Similar observation by Hind and Lowe, March 12, 1849 (L’Année Scientifique, 1876-9).

Nature, 14-505:

Body of apparent size of Mercury, seen, Jan. 29, 1860, by F. A. R. Russell and four other observers, crossing the sun.

De Vico's observation of July 12, 1837 (Observatory, 2-424).

L’Année Scientifique, 1865-16:

That another amateur astronomer, M. Coumbray, of Constantinople, had written to Leverrier, that, upon the 8th of March, 1865,

p. 202

he had seen a black point, sharply outlined, traverse the disk of the sun. It detached itself from a group of sun spots near the limb of the sun, and took 48 minutes to reach the other limb. Figuring upon the diagram sent by M. Coumbray, a central passage would have taken a little more than an hour. This observation was disregarded by Leverrier, because his formula required about four times that velocity. The point here is that these other observations are as authentic as those that Leverrier included; that, then, upon data as good as the data of "Vulcan," there must be other "Vulcans"—the heroic and defiant disregard, then, of trying to formulate one, omitting the others, which, by orthodox doctrine, must have influenced it greatly, if all were in the relatively narrow space between Mercury and the sun.

Observation upon another such body, of April 4, 1876, by M. Weber, of Berlin. As to this observation, Leverrier was informed by Wolf, in August, 1876 (L’Année Scientifique, 1876-7). It made no difference, so far as can be known, to this notable positivist.

Two other observations noted by Hind and Denning—London Times, Nov. 3, 1871, and March 26, 1873.

Monthly Notices of the R.A.S., 20-100:

Standacher, February, 1762; Lichtenberg, Nov. 19, 1762; Hoffman, May, 1764; Dangos, Jan. 18, 1798; Stark, Feb. 12, 1820. An observation by Schmidt, Oct. 11, 1847, is said to be doubtful: but, upon page 192, it is said that this doubt had arisen because of a mistaken translation, and two other observations by Schmidt are given: Oct. 14, 1849, and Feb. 18, 1850—also an observation by Lofft, Jan. 6, 1818. Observation by Steinheibel, at Vienna, April 27, 1820 (Monthly Notices, 1862).

Haase had collected reports of twenty observations like Lescarbault's. The list was published in 1872, by Wolf. Also there are other instances like Gruthinsen's:

Amer. Jour. Sci., 2-28-446:

Report by Pastorff that he had seen twice in 1836, and once in 1837, two round spots of unequal size moving across the sun, changing position relatively to each other, and taking a different course, if not orbit, each time: that, in 1834, he had seen similar bodies pass

p. 203

six times across the disk of the sun, looking very much like Mercury in his transits.

March 22, 1876—

But to point out Leverrier's poverty-stricken average—or discovering planets upon a fifty per cent. basis—would be to point out the low percentage of realness in the quasi-myth-stuff of which the whole system is composed. We do not accuse the text-books of omitting this fiasco, but we do note that theirs is the conventional adaptation here of all beguilers who are in difficulties

The diverting of attention.

It wouldn't be possible in a real existence, with real mentality, to deal with, but I suppose it's good enough for the quasi-intellects that stupefy themselves with text-books. The trick here is to gloss over Leverrier's mistake, and blame Lescarbault—he was only an amateur—had delusions. The reader's attention is led against Lescarbault by a report from M. Lias, director of the Brazilian Coast Survey, who, at the time of Lescarbault's "supposed" observation had been watching the sun in Brazil, and, instead of seeing even ordinary sun spots, had noted that the region of the "supposed transit" was of "uniform intensity."

But the meaninglessness of all utterances in quasi-existence—

"Uniform intensity" turns our way as much as against us—or some day some brain will conceive a way of beating Newton's third law—if every reaction, or resistance, is, or can be, interpretable as stimulus instead of resistance—if this could be done in mechanics, there's a way open here for someone to own the world—specifically in this matter, "uniform intensity" means that Lescarbault saw no ordinary sun spot, just as much as it means that no spot at all was seen upon the sun. Continuing the interpretation of a resistance as an assistance, which can always be done with mental forces—making us wonder what applications could be made with steam and electric forces—we point out that invisibility in Brazil means parallax quite as truly as it means absence, and, inasmuch as "Vulcan" was supposed to be distant from the sun, we interpret denial as corroboration—method of course of every scientist, politician, theologian, high-school debater.

So the text-books, with no especial cleverness, because no especial

p. 204

cleverness is needed, lead the reader into contempt for the amateur of Orgères, and forgetfulness of Leverrier—and some other subject is taken up.

But our own acceptance:

That these data are as good as ever they were;

That, if someone of eminence should predict an earthquake, and if there should be no earthquake at the predicted time, that would discredit the prophet, but data of past earthquakes would remain as good as ever they had been. It is easy enough to smile at the illusion of a single amateur—

The mass-formation:

Fritsche, Stark, De Cuppis, Sidebotham, Lescarbault, Lummis, Gruthinson, De Vico, Scott, Wray, Russell, Hind, Lowe, Coumbray, Weber, Standacher, Lichtenberg, Dangos, Hoffman, Schmidt, Lofft, Steinheibel, Pastorff—

These are only the observations conventionally listed relatively to an Intra-Mercurial planet. They are formidable enough to prevent our being diverted, as if it were all the dream of a lonely amateur—but they're a mere advance-guard. From now on other data of large celestial bodies, some dark and some reflecting light, will pass and pass and keep on passing—

So that some of us will remember a thing or two, after the procession's over—possibly.

Taking up only one of the listed observations—

Or our impression that the discrediting of Leverrier has nothing to do with the acceptability of these data:

In the London Times, Jan. 10, 1860, is Benjamin Scott's account of his observation:

That, in the summer of 1847, he had seen a body that had seemed to be the size of Venus, crossing the sun. He says that, hardly believing the evidence of his sense of sight, he had looked for someone, whose hopes or ambitions would not make him so subject to illusion. He had told his little son, aged five years, to look through the telescope. The child had exclaimed that he had seen "a little balloon" crossing the sun. Scott says that he had not had sufficient self-reliance to make public announcement of his remarkable observation at the time, but that, in the evening of the same day, he

p. 205

had told Dr. Dick, F.R.A.S., who had cited other instances. In the Times, Jan. 12, 1860, is published a letter from Richard Abbott, F.R.A.S.: that he remembered Mr. Scott's letter to him upon this observation, at the time of the occurrence.

I suppose that, at the beginning of this chapter, one had the notion that, by hard scratching through musty old records we might rake up vague, more than doubtful data, distortable into what's called evidence of unrecognized worlds or constructions of planetary size—

But the high authenticity and the support and the modernity of these of the accursed that we are now considering—

And our acceptance that ours is a quasi-existence, in which above all other things, hopes, ambitions, emotions, motivations, stands Attempt to Positivize: that we are here considering an attempt to systematize that is sheer fanaticism in its disregard of the unsystematizable—that it represented the highest good in the 19th century—that it is mono-mania, but heroic mono-mania that was quasi-divine in the 19th century—

But that this isn't the 19th century.

As a doubly sponsored Brahmin—in the regard of Baptists—the objects of July 29, 1878, stand out and proclaim themselves so that nothing but disregard of the intensity of mono-mania can account for their reception by the system:

Or the total eclipse of July 29, 1878, and the reports by Prof. Watson, from Rawlins, Wyoming, and by Prof. Swift, from Denver, Colorado: that they had seen two shining objects at a considerable distance from the sun.

It's quite in accord with our general expression: not that there is an Intra-Mercurial planet, but that there are different bodies, many vast things; near this earth sometimes, near the sun sometimes; orbitless worlds, which, because of scarcely any data of collisions, we think of as under navigable control—or dirigible super-constructions.

Prof. Watson and Prof. Swift published their observations. Then the disregard that we cannot think of in terms of ordinary, sane exclusions.

The text-book systematists begin by telling us that the trouble

p. 206

with these observations is that they disagree widely: there is considerable respectfulness, especially for Prof. Swift, but we are told that by coincidence these two astronomers, hundreds of miles apart, were illuded: their observations were so different—

Prof. Swift (Nature, Sept. 19, 1878):

That his own observation was "in close approximation to that given by Prof. Watson."

In the Observatory, 2-161, Swift says that his observations and Watson's were "confirmatory of each other."

The faithful try again:

That Watson and Swift mistook stars for other bodies.

In the Observatory, 2-193, Prof. Watson says that he had previously committed to memory all stars near the sun, down to the seventh magnitude

And he's damned anyway.

How such exclusions work out is shown by Lockyer (Nature, Aug. 20, 1878). He says: "There is little doubt that an Intra-Mercurial planet has been discovered by Prof. Watson."

That was before excommunication was pronounced.

He says:

"If it will fit one of Leverrier's orbits"—

It didn't fit.

In Nature, 21-301, Prof. Swift says:

"I have never made a more valid observation, nor one more free from doubt."

He's damned anyway.

We shall have some data that will not live up to most rigorous requirements, but, if anyone would like to read how carefully and minutely these two sets of observations were made, see Prof. Swift's detailed description in the Am. Jour. Sci., 116-313; and the technicalities of Prof. Watson's observations in Monthly Notices, 38-525.

Our own acceptance upon dirigible worlds, which is assuredly enough, more nearly real than attempted concepts of large planets relatively near this earth, moving in orbits, but visible only occasionally; which more nearly approximates to reasonableness than does wholesale slaughter of Swift and Watson and Fritsche and

p. 207

[paragraph continues] Stark and De Cuppis—but our own acceptance is so painful to so many minds that, in another of the charitable moments that we have now and then for the sake of contrast, we offer relief:

The things seen high in the sky by Swift and Watson—

Well, only two months before—the horse and the barn—

We go on with more observations by astronomers, recognizing that it is the very thing that has given them life, sustained them, held them together, that has crushed all but the quasi-gleam of independent life out of them. Were they not systematized, they could not be at all, except sporadically and without sustenance. They are systematized: they must not vary from the conditions of the system: they must not break away for themselves.

The two great commandments:

Thou shalt not break Continuity;

Thou shalt try.

We go on with these disregarded data, some of which, many of which, are of the highest degree of acceptability. It is the System that pulls back its variations, as this earth is pulling back the Matterhorn. It is the System that nourishes and rewards, and also freezes out life with the chill of disregard. We do note that, before excommunication is pronounced, orthodox journals do liberally enough record unassimilable observations.

All things merge away into everything else.

That is Continuity.

So the System merges away and evades us when we try to focus against it.

We have complained a great deal. At least we are not so dull as to have the delusion that we know just exactly what it is that we are complaining about. We speak seemingly definitely enough of "the System," but we're building upon observations by members of that very system. Or what we are doing—gathering up the loose heresies of the orthodox. Of course "the System" fringes and ravels away, having no real outline. A Swift will antagonize "the System," and a Lockyer will call him back; but, then, a Lockyer will vary with a "meteoric hypothesis," and a Swift will, in turn, represent "the System." This state is to us typical of all intermediatist phenomena; or that not conceivably is anything

p. 208

really anything, if its parts are likely to be their own opposites at any time. We speak of astronomers—as if there were real astronomers—but who have lost their identity in a System—as if it were a real System—but behind that System is plainly a rapport, or loss of identity in the Spirit of an Era.

Bodies that have looked like dark bodies, and lights that may have been sunlight reflected from interplanetary—objects, masses, constructions—

Lights that have been seen upon—or near?—the moon:

In Philosophical Transactions, 82-27, is Herschel's report upon many luminous points, which he saw upon—or near?—the moon, during an eclipse. Why they should be luminous, whereas the moon itself was dark, would get us into a lot of trouble—except that later we shall, or we sha'n't, accept that many times have luminous objects been seen close to this earth—at night.

But numerousness is a new factor, or new disturbance, to our explorations—

A new aspect of inter-planetary inhabitancy or occupancy—

Worlds in hordes—or beings—winged beings perhaps—wouldn't astonish me if we should end up by discovering angels—or beings in machines—argosies of celestial voyagers—

In 1783 and 1787, Herschel reported more lights on or near the moon, which he supposed were volcanic.

The word of a Herschel has had no more weight, in divergences from the orthodox, than has had the word of a Lescarbault. These observations are of the disregarded.

Bright spots seen on the moon, November, 1821 (Proc. London Roy. Soc., 2-167).

For four other instances, see Loomis (Treatise on Astronomy, p. 174).

A moving light is reported in Phil. Trans., 84-429. To the writer, it looked like a star passing over the moon—"which, on the next moment's consideration I knew to be impossible." "It was a fixed, steady light upon the dark part of the moon." I suppose "fixed" applies to luster.

In the Report of the Brit. Assoc., 1847-18, there is an observation by Rankin, upon luminous points seen on the shaded part of the

p. 209

moon, during an eclipse. They seemed to this observer like reflections of stars. That's not very reasonable: however, we have, in the Annual Register, 1821-687, a light not referable to a star—because it moved with the moon: was seen three nights in succession; reported by Capt. Kater. See Quart. four. Roy. Inst., 12-133.

Phil. Trans., 112-237:

Report from the Cape Town Observatory: a whitish spot on the dark part of the moon's limb. Three smaller lights were seen.

The call of positiveness, in its aspects of singleness, or homogeneity, or oneness, or completeness. In data now coming, I feel it myself. A Leverrier studies more than twenty observations. The inclination is irresistible to think that they all relate to one phenomenon. It is an expression of cosmic inclination. Most of the observations are so irreconcilable with any acceptance other than of orbitless, dirigible worlds that he shuts his eyes to more than two-thirds of them; he picks out six that can give him the illusion of completeness, or of all relating to one planet.

Or let it be that we have data of many dark bodies—still do we incline almost irresistibly to think of one of them as the dark-body-in-chief. Dark bodies, floating, or navigating, in inter-planetary space—and I conceive of one that's the Prince of Dark Bodies:


Vast dark thing with the wings of a super-bat, or jet-black super-construction; most likely one of the spores of the Evil One. The extraordinary year, 1883:

London Times, Dec. 17, 1883:

Extract from a letter by Hicks Pashaw: that, in Egypt, Sept. 24, 1883, he had seen, through glasses, "an immense black spot upon the lower part of the sun."

Sun spot, maybe.

One night an astronomer was looking up at the sky, when something obscured a star, for three and a half seconds. A meteor had been seen nearby, but its train had been only momentarily visible. Wolf was the astronomer (Nature, 86-528).

The next datum is one of the most sensational we have, except at there is very little to it. A dark object that was seen by Prof.

p. 210

[paragraph continues] Heis, for eleven degrees of arc, moving slowly across the Milky Way. (Greg's Catalogue, Rept. Brit. Assoc., 1867-426.)

One of our quasi-reasons for accepting that orbitless worlds are dirigible is the almost complete absence of data of collisions: of course, though in defiance of gravitation, they may, without direction like human direction, adjust to one another in the way of vortex rings of smoke—a very human-like way, that is. But in Knowledge, February, 1894, are two photographs of Brooks' comet that are shown as evidence of its seeming collision with a dark object, October, 1893. Our own wording is that it "struck against something": Prof. Barnard's is that it had "entered some dense medium, which shattered it." For all I know it had knocked against merely a field of ice.


That upon the wings of a super-bat, he broods over this earth and over other worlds, perhaps deriving something from them: hovers on wings, or wing-like appendages, or planes that are hundreds of miles from tip to tip—a super-evil thing that is exploiting us. By Evil I mean that which makes us useful.

He obscures a star. He shoves a comet. I think he's a vast, black, brooding vampire.

Science, July 31, 1896:

That, according to a newspaper account, Mr. W. R. Brooks, director of the Smith Observatory, had seen a dark round object pass rather slowly across the moon, in a horizontal direction. In Mr. Brooks' opinion it was a dark meteor. In Science, Sept. 14, 1896, a correspondent writes that, in his opinion, it may have been a bird. We shall have no trouble with the meteor and bird mergers, if we have observations of long duration and estimates of size up to hundreds of miles. As to the body that was seen by Brooks, there is a note from the Dutch astronomer, Muller, in the Scientific American, 75-251, that, upon April 4, 1892, he had seen a similar phenomenon. In Science Gossip, n.s., 3-135, are more details of the Brooks object—apparent diameter about one-thirtieth of the moon's—moon's disk crossed in three or four seconds. The writer, in Science Gossip, says that, on June 27, 1896, at one o'clock in the morning, he was looking at the moon with a 2-inch achromatic,

p. 211

power 44, when a long black object sailed past, from west to east, the transit occupying 3 or 4 seconds. He believed this object to be a bird—there was, however, no fluttering motion observable in it.

In the Astronomische Nachrichten, No. 3477, Dr. Brendel, of Griefswald, Pomerania, writes that Postmaster Ziegler and other observers had seen a body about 6 feet in diameter crossing the sun's disk. The duration here indicates something far from the earth, and also far from the sun. This thing was seen a quarter of an hour before it reached the sun. Time in crossing the sun was about an hour. After leaving the sun it was visible an hour.

I think he's a vast, black vampire that sometimes broods over this earth and other bodies.

Communication from Dr. F. B. Harris (Popular Astronomy, 20398):

That, upon the evening of Jan. 27, 1912, Dr. Harris saw, upon the moon, "an intensely black object." He estimated it to be 250 miles long and 50 miles wide. "The object resembled a crow poised, as near as anything." Clouds then cut off observation.

Dr. Harris writes:

"I cannot but think that a very interesting and curious phenomenon happened."




Short chapter coming now, and it's the worst of them all. I think it's speculative. It's a lapse from our usual pseudo-standards. I think it must mean that the preceding chapter was very efficiently done, and that now by the rhythm of all quasi-things—which can't be real things, if they're rhythms, because a rhythm is an appearance that turns into its own opposite and then back again—but now, to pay up, we're what we weren't. Short chapter, and I think we'll fill in with several points in Intermediatism.

A puzzle:

p. 212

If it is our acceptance that, out of the Negative Absolute, the Positive Absolute is generating itself, recruiting, or maintaining, itself, via a third state, or our own quasi-state, it would seem that we're trying to conceive of Universalness manufacturing more Universalness from Nothingness. Take that up yourself, if you're willing to run the risk of disappearing with such velocity that you'll leave an incandescent train behind, and risk being infinitely happy forever, whereas you probably don't want to be happy—I'll sidestep that myself, and try to be intelligible by regarding the Positive Absolute from the aspect of Realness instead of Universalness, recalling that by both Realness and Universalness we mean the same state, or that which does not merge away into something else, because there is nothing else. So the idea is that out of Un-realness, instead of Nothingness, Realness, instead of Universalness, is, via our own quasi-state, manufacturing more Realness. Just so, but in relative terms, of course, all imaginings that materialize into machines or statues, buildings, dollars, paintings or books in paper and ink are graduations from unrealness to realness—in relative terms. It would seem then that Intermediateness is a relation between the Positive Absolute and the Negative Absolute. But the absolute cannot be the related—of course a confession that we can't really think of it at all, if here we think of a limit to the unlimited. Doing the best we can, and encouraged by the reflection that we can't do worse than has been done by metaphysicians in the past, we accept that the absolute can't be the related. So then that our quasi-state is not a real relation, if nothing in it is real. On the other hand, it is not an unreal relation, if nothing in it is unreal. It seems thinkable that the Positive Absolute can, by means of Intermediateness, have a quasi-relation, or be only quasi-related, or be the unrelated, in final terms, or, at least, not be the related, in final terms.

As to free will and Intermediatism—same answer as to everything else. By free will we mean Independence—or that which does not merge away into something else—so, in Intermediateness, neither free-will nor slave-will—but a different approximation for every so-called person toward one or the other of the extremes. The hackneyed way of expressing this seems to me to be the acceptable

p. 213

way, if in Intermediateness, there is only the paradoxical: that we're free to do what we have to do.

I am not convinced that we make a fetish of the preposterous. I think our feeling is that in first gropings there's no knowing what will afterward be the acceptable. I think that if an early biologist heard of birds that grow on trees, he should record that he had heard of birds that grow on trees: then let sorting over of data occur afterward. The one thing that we try to tone down but that is to a great degree unavoidable is having our data all mixed up like Long Island and Florida in the minds of early American explorers. My own notion is that this whole book is very much like a map of North America in which the Hudson River is set down as a passage leading to Siberia. We think of Monstrator and Melanicus and of a world that is now in communication with this earth: if so, secretly, with certain esoteric ones upon this earth. Whether that world's Monstrator and Monstrator's Melanicus—must be the subject of later inquiry. It would be a gross thing to do: solve up everything now and leave nothing to our disciples.

I have been very much struck with phenomena of "cup marks."

They look to me like symbols of communication.

But they do not look to me like means of communication between some of the inhabitants of this earth and other inhabitants of this earth.

My own impression is that some external force has marked, with symbols, rocks of this earth, from far away.

I do not think that cup marks are inscribed communications among different inhabitants of this earth, because it seems too unacceptable that inhabitants of China, Scotland, and America should all have conceived of the same system.

Cup marks are strings of cup-like impressions in rocks. Sometimes there are rings around them, and sometimes they have only semi-circles. Great Britain, America, France, Algeria, Circassia, Palestine: they're virtually everywhere—except in the far north, I think. In China, cliffs are dotted with them. Upon a cliff near Lake Como, there is a maze of these markings. In Italy and Spain and India they occur in enormous numbers.

Given that a force, say, like electric force, could, from a distance,

p. 214

mark such a substance as rocks, as, from a distance of hundreds of miles, selenium can be marked by telephotographers—but I am of two minds—

The Lost Explorers from Somewhere, and an attempt, from Somewhere, to communicate with them: so a frenzy of showering of messages toward this earth, in the hope that some of them would mark rocks near the lost explorers—

Or that somewhere upon this earth, there is an especial rocky surface, or receptor, or polar construction, or a steep, conical hill, upon which for ages have been received messages from some other world; but that at times messages go astray and mark substances perhaps thousands of miles from the receptor;

That perhaps forces behind the history of this earth have left upon the rocks of Palestine and England and India and China records that may some day be deciphered, of their misdirected instructions to certain esoteric ones—Order of the Freemasons—the Jesuits—

I emphasize the row-formation of cup marks:

Prof. Douglas (Saturday Review, Nov. 24, 1883):

"Whatever may have been their motive, the cup-markers showed a decided liking for arranging their sculpturings in regularly spaced rows."

That cup marks are an archaic form of inscription was first suggested by Canon Greenwell many years ago. But more specifically adumbratory to our own expression are the observations of Rivett-Carnac (Jour. Roy. Asiatic Soc., 1903-515)

That the Braille system of raised dots is an inverted arrangement of cup marks: also that there are strong resemblances to the Morse code. But no tame and systematized archæologist can do more than casually point out resemblances, and merely suggest that strings of cup marks look like messages, because—China, Switzerland, Algeria, America—if messages they be, there seems to be no escape from attributing one origin to them—then, if messages they be, I accept one external origin, to which the whole surface of this earth was accessible, for them.

Something else that we emphasize:

That rows of cup marks have often been likened to footprints.

p. 215

But, in this similitude, their unilinear arrangement must be disregarded—of course often they're mixed up in every way, but arrangement in single lines is very common. It is odd that they should so often be likened to footprints: I suppose there are exceptional cases, but unless it's something that hops on one foot, or a cat going along a narrow fence-top, I don't think of anything that makes footprints one directly ahead of another—Cop, in a station house, walking a chalk line, perhaps.

Upon the Witch's Stone, near Ratho, Scotland, there are twenty-four cups, varying in size from one and a half to three inches in diameter, arranged in approximately straight lines. Locally it is explained that these are tracks of dogs’ feet (Proc. Soc. Antiq. Scotland, 2-4-79). Similar marks are scattered bewilderingly all around the Witch's Stone—like a frenzy of telegraphing, or like messages repeating and repeating, trying to localize differently.

In Inverness-shire, cup marks are called "fairies’ footmarks." At Valna's church, Norway, and St. Peter's, Ambleteuse, there are such marks, said to be horses’ hoofprints. The rocks of Clare, Ireland, are marked with prints supposed to have been made by a mythical cow (Folklore, 21-184).

We now have such a ghost of a thing that I'd not like to be interpreted as offering it as a datum: it simply illustrates what I mean by the notion of symbols, like cups, or like footprints, which, if like those of horses or cows, are the reverse of, or the negatives of, cups—of symbols that are regularly received somewhere upon this earth—steep, conical hill, somewhere, I think—but that have often alighted in wrong places—considerably to the mystification of persons waking up some morning to find them upon formerly blank spaces.

An ancient record—still worse, an ancient Chinese record—of a courtyard of a palace—dwellers of the palace waking up one morning, finding the courtyard marked with tracks like the footprints of an ox—supposed that the devil did it. (Notes and Queries, 9-6225.)